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Introduction. The “phase space formulation of quantum mechanics” radiates
from a definition

Pψ(x, p) ≡ 2
h

∫
ψ∗(x + ξ) e2 i

�
pξ ψ(x− ξ) dξ (1)

which Wigner1 was content to introduce as an unmotivated ad hoc contrivance,
an aid to discussion of the relation of quantum statistical mechanics to its
classical counterpart. The “Wigner distribution” is known today to possess a
number of elegant and highly useful properties—some of which were known
already to its co-inventor (whose acknowledged companion in this instance
was Szilard)—but many of those are non-obvious/hidden, while on its face
(1) displays some off-putting features. One of those that will concern us is its
seeming xp-asymmetry.

By the mid-’s it had been realized by several people2 that Wigner’s
construction arises quite naturally from the (xp-symmetric) theory of the “Weyl
transform,” which had been sketched by Weyl already in .3 Specifically,

1 E. P.Wigner,“On the quantum correction for thermodynamic equilibrium,”
Phys. Rev. 40, 749 (1932).

2 J. H. Groenwold, “On the principles of elementary quantum mechanics,”
Physica 12, 405 (1946); J. E. Moyal, “Quantum mechanics as a statistical
theory,” Proc. Camb. Phil. Soc. 45, 92 (1949).

3 The Weyl transform uses generalized Fourier analytic techniques to set up
an association (“Weyl correspondence”) of the form

classical observable A(x, p)←−−−−−−−−−−→
Weyl

quantum observable A

For review of the essentials see pages 4–9 of “Weyl transform and the phase
space formalism,” which is Chapter 2 of advanced quantum topics ().
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hPψ(x, p) was recognized to be the Weyl transform of the pure-state density
operator ρψ:

hPψ(x, p)←−−−−−−−−−−→
Weyl

ρψ ≡ |ψ)(ψ|

Explicitly

hPψ(x, p) = 1
h

∫∫
(ψ|e− i

�
(αp+β x )|ψ) e

i
�
(αp+βx) dαdβ (2)

which, we note in passing, is xp-symmetric. To recover (1) from (2) one might
proceed this way:

Look first to

(ψ|e− i
�
(αp+β x )|ψ) =

∫∫
(ψ|x)dx(x|e− i

�
(αp+β x )|p)dp(p|ψ)

Borrow from Campbell-Baker-Hausdorff theory the identity

e−
i
�
(αp+β x ) = e

1
2

i
�
αβe−

i
�
β x e−

i
�
αp

(which is a consequence ultimately of
[
x , p

]
= i� I) to obtain

(ψ|e− i
�
(αp+β x )|ψ) = e

1
2

i
�
αβ

∫∫
(ψ|x) e−

i
�
βxe−

i
�
αp(x|p)(p|ψ) dxdp (3)

But (x|p) = 1√
h
e

i
�
px and

(p|ψ) =
∫

(p|x)dx(x|ψ) = 1√
h

∫
e−

i
�
px(x|ψ) dx

so

(ψ|e− i
�
(αp+β x )|ψ) = 1

h e
1
2

i
�
αβ

∫∫∫
(ψ|x) e−

i
�
βxe−

i
�
αpe

i
�
p(x−x)(x|ψ) dxdpdx

= e
1
2

i
�
αβ

∫∫
(ψ|x) e−

i
�
βxδ(x− x− α)(x|ψ) dxdx

=
∫

(ψ|x)e−
i
�
β(x− 1

2α)(x− α|ψ) dx

Returning with this information to (2) we have

hPψ(x, p) = 1
h

∫∫∫
(ψ|x)e−

i
�
β(x− 1

2α) e
i
�
(αp+βx)(x− α|ψ) dxdαdβ

=
∫∫

(ψ|x)e
i
�
αpδ(x− x + 1

2α)(x− α|ψ) dxdα

=
∫

(ψ|x + 1
2α) e

i
�
αp(x− 1

2α|ψ) dα (4.1)

which gives back (1) after a trivial change of variables: α = 2ξ.
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Had we, on the other hand, introduced

(ψ|x) =
∫

(ψ|p)dp(p|x) = 1√
h

∫
(ψ|p)e+ i

�
px dp

into (3) we would have been led by the same argument to this “momental
companion” of (4.1):

hPψ(x, p) =
∫

(ψ|p− 1
2β) e

i
�
βx(p + 1

2β|ψ) dβ (4.2)

Equations (4) collaboratively restore xp-symmetry to the Wigner formalism,
and show how—by installation of a convention—that underlying symmetry
comes to seem broken.

In the preceding discussion

all integrals are to be read
∫ +∞

−∞

which is “natural to the physics” of (say) free particles and oscillators, but
presents a nest of formal difficulties when one attempts to apply the Wigner
formalism to the particle-in-a-box problem. My objective here will be to
identify and, if possible, to resolve those difficulties.4

Essentials of the particle-in-a-box problem. A mass point m is confined by
infinite forces to the interior 0 � x � a of an interval (or “box”), within which
it moves freely.5 The time-independent Schrödinger equations reads

ψ′′(x) = −k2ψ(x) with k ≡
√

2mE/�2

and physically acceptable solutions are required
• to be continuous
• to vanish outside the box
• to be normalized.

Immediately

ψn(x) =
√

2
a sin knx with kn ≡ n π

a : n = 1, 2, 3, . . . (5.1)

and
En = (�2/2m)k2

n = En2 with E ≡ h2/8ma2 (5.2)

4 The topic is explored on pages 33–45 of Rodney Yoder’s “The phase space
formulation of quantum mechanics and the problem of negative probabilities,”
(Reed College thesis, ).

5 I adhere to the conventions adopted in “2-dimensional ‘particle-in-a-box’
problems in quantum mechanics: Part I. Propagator & eigenfunctions by the
method of images” (). Yoder, on the other hand, elected to distribute his
box boundaries symmetrically about the origin: −a � x � +a.
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Writing
En = p2

n/2m

we have
pn = �kn = n(h/2a) (5.3)

Classically, such a confined free particle traces a rectangular trajectory in phase
space, of

phase arean = 2pn · a = nh

as required by the “Planck quantization condition.”

Calculation supplies the following moment data:

〈x1〉n ≡
∫ a

0

ψ∗
n(x)x1ψn(x) dx = 1

2a : all n

〈x2〉n ≡
∫ a

0

ψ∗
n(x)x2ψn(x) dx =

{
1
3 − 1

2π2n2

}
a2

↓
= 1

3a2 for n large
= result from flat distribution!

Therefore (by precisely the calculation that yields I = 1
12m�2 for the moment

of inertial of a uniform rod, pinned at its center)

∆x =
√
〈x2〉 − 〈x1〉2 =

{
0.18075 a : n = 1

1√
12

a = 0.28867 a : for n large

The uncertainty principle requires

∆x∆p � 1
2�

so we have

∆p =
√
〈p2〉 − 〈p1〉2 �

{
2.76625 �/a : n = 1
1.73208 �/a : for n large

which gets smaller as the box gets larger. On the other hand, if the system is
known to be in the nth eigenstate then En is known precisely, and pn is known
to within a sign; we might expect, therefore, to have

〈p1〉 = 0 and 〈p2〉 = 2mEn = �
2
(
n π

a
)2

giving ∆p = (nπ)�/a; this, we note, is consistent with the uncertainty principle
even in the case n = 1.

Confinement serves to assign a largest possible value to ∆x, which is

evidently achieved in the case ψ(x) =
√

1
2δ(x− ε) + 1

2δ(x− a + ε). One then
has

∆xmax = a/2
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giving
∆pmin = �/a

= pn+2 − pn ; any n

One can perfectly well contemplate measuring the instantaneous momentum of
a particle in a box, but cannot expect to exceed the accuracy just stated. To
phrase the issue another way: the time available for an energy measurement
is (if we assume the window to be closed by the next wall collision) given on
average by

∆t � 1
2 (transit time, one side of box to other with speed p/m) = ma/2p

Then ∆E ∆t � 1
2� supplies

∆E � �p/ma

But E = p2/2m ⇒ ∆E = 2p∆p/2m so we have 2p∆p/2m � �p/ma from
which we recover ∆pmin = �/a.

The state of maximal ∆x is a high information/low entropy state: one can
expect to find the particle at one or the other boundaries of the box. Least
information/highest entropy—maximal uncertainty in a sense more profound
than is indicated by ∆x—requires that the distribution be flat

|ψflat(x)|2 =
{

1/a : 0 < x < a
0 : elsewhere

which in turn requires that

ψflat(x) = 1√
a
eiϕ(x) : ϕ(x) real, otherwise arbitrary

If f(x) is odd with period 2a (i.e., if f(x) = −f(−x) and f(x + 2na) = f(x))
the theory of Fourier series supplies

f(x) =
∞∑
n=1

bn

√
2
a sinn π

ax

bn =
∫ a

0

f(x) ·
√

2
a sinn π

ax dx

so we might expect to have

|ψflat(x)|2 =
∞∑
n=1

bn

√
2
a sinn π

ax

bn =
∫ a

0

1
a ·

√
2
a sinn π

ax dx =
√

2

nπ
√

a
(1− cosnπ)

= 4
πa

{
1
1 sin 1 π

ax+ 0 + 1
3 sin 3 π

ax + 0 + 1
5 sin 5 π

ax + · · ·
}

= 2
πa

∞∑
n=1

1− cosnπ
n sinn π

ax (6.1)
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Figure 1: Flat state as superposition of eigenstates. The top figure
derives from (6.2), with a = 1 and ϕ(x) ≡ 0. Terms with n >
50 have been abandoned, and Gibbs’ phenomenon is evident. The
physical box is positioned 0 � x � 1, and ψ(x) is continued as
an odd function into the exterior region. The lower figure shows
|ψ(x)|2, which is continued as an even function.

but this does not suffice to nail down ψflat(x) itself. Were we to set

ψflat(x) = 2

π
√

a

∞∑
n=1

1− cosnπ
n sinn π

ax · eiϕ(x) (6.2)

then |ψflat(x)|2 would be flat, but an even periodic function—distinct from
(6.1). Note that flat wavefunctions with distinct phase factors will have distinct
spectra. And that some pretty fancy function theory must enter into any explicit
demonstration that (interior to the box) |(6.2)|2 = (6.1).

The functions discussed above continue periodically/non-vanishingly into
regions exterior to the box. To achieve extinction in the exterior region we must
abandon Fourier series in favor of the Fourier transform, writing

ψ(x) =
∫ +∞

−∞
b(k) eikx dk

b(k) = 1
2π

∫ +∞

−∞
ψ(x) e−ikx dx
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If Ψflat(x) is flat in the strong/aperiodic/more physical sense

Ψflat(x) =
{

a− 1
2 : 0 < x < a

0 : elsewhere
(7)

then
b(k) = 1

2π

∫ a

0

a− 1
2 e−ikx dx = 1

2πik
√
a

(
1− e−iak

)
supplies

Ψflat(x) =
∫ +∞

−∞
1

2πik
√
a

(
1− e−iak

)
eikx dk

= 2
∫ ∞

0

(even part of integrand) dk

= 1
π
√
a

∫ ∞

0

sin kx− sin k(x− a)
k

dk (8.1)

= 1
π
√
a

∫ ∞

0

{
1− cos ka

k
sin kx +

sin ka

k
cos kx

}
dk

which by a change of variables k = νπ/a becomes

= 1
π
√
a

∫ ∞

0

{
1− cos νπ

ν
sin ν π

ax +
sin νπ

ν
cos ν π

ax

}
dν (8.2)

The leading term on the right side of the final expression looks (except for
a missing 2 and an omitted phase factor) like a continuous analog of (6.2).
Mathematica confirms that Ψflat(x), as described most conveniently by (8.1),
does indeed reproduce (7), but we have

Ψflat(0) = Ψflat(a) = 1
π
√
a

∫ ∞

0

sin ka

k
dk = 1

2a− 1
2

This conforms to the general principle according to which the Fourier transform
“splits the difference” at jump discontinuities, and since we are dealing here with
an idealized situation we have no secure grounds on which to consider such a
result physically dubious.

To address the physical issue just raised, let us look to the “clamped energy
eigenstates”

Ψn(x) =




√
2
a sinn π

ax : 0 � x � a

0 : elsewhere

(9.1)

which are continuous at the boundaries of the box (where, however, they exhibit
undifferentiable kinks). We compute the Fourier transform

bn(k) = 1
2π

∫ a

0

Ψn(x)e−ikx dx =
√

a
2 n

1− (−)ne−iak

n2π2 − a2k2
(9.2)



8 Particle-in-a-box problem in phase space formalism

-2 -1 1 2 -2 -1 1 2

-2 -1 1 2 -2 -1 1 2

-2 -1 1 2 -2 -1 1 2

Figure 2: Illustrations of the clever way in which (10) does its
work. In the left column n = 1, in the right column n = 2. Figures
in the top row derive from the first term, and figures in the second
row from the second term . . . on the right side of (10). Addition
produces the figures in the bottom row. Simple though it is, I think
this—which occurred to Mathematica but would never have occurred
to me—to be one of the sweetest constructions I have encountered.

and obtain

Ψn(x) =
√

a
2 n

∫ +∞

−∞

1
n2π2 − a2k2

{
eikx − (−)neik(x−a)

}
dk

=
√

2an

∫ ∞

0

1
n2π2 − a2k2

{
cos kx− (−)n cos k(x− a)

}
dk

Though the integrand becomes singular at k = ±nπ/a, the integral yields to
Mathematica’s PrincipalValue→True option, which supplies

= 1√
2a

{
Sign[x] · sinnπ

ax− (−)n Sign[x− a] · sinnπ
a (x− a)

}
(10)

Alternatively (though it amounts actually to the same thing), one might appeal



Essentials of the particle-in-a-box problem 9

Figure 3: The figure is to be read in reference to (11). Select the
left/right contour according as x ≶ 0 to ascribe value to 1st integral,
and according as x ≶ a to ascribe value to 2nd integral.

to the calculus of residues: use
1

n2π2 − a2k2
= 1

2πna

[ 1
k + nπa

− 1
k − nπa

]
to obtain (after complexification of k : k �→ k + i�)

Ψn(x) = 1√
2a

{
1

2πi

∮
i
[ 1
k + nπa

− 1
k − nπa

]
eikx dk

− (−)n 1
2πi

∮
i
[ 1
k + nπa

− 1
k − nπa

]
eik(x−a) dk

}
= 1st integral− (−)n · 2nd integral (11)

Selecting contours as indicated in the preceding figure, one obtains

1st integral =

{
0 : x < 0√

2
a sinn π

ax : 0 < x

2nd integral =

{
0 : x < a

(−)2n
√

2
a sinn π

ax : a < x

—whence the desired result (9.1).

That the “periodically continuated” and “clamped” approaches to the
particle-in-a-box problem (see Figure 4) are—even though ψ(x) and Ψ(x)
appear identical to a “physicist-in-the-box”—both analytically and physically
distinct becomes strikingly evident when one passes from (x|ψ) to (p|ψ) . . .
though one point of commonality should be noted at the outset: in neither
formalism is it possible to speak of a “momentum eigenstate.” For the requisite
conditions

�

i
d
dxψp(x) = pψp(x) , ψp(0) = ψp(a) = 0 ,

∫ a

0

|ψp(x)|2 dx = 1

cannot hold simultaneously. Common also to both formalisms are the equations
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Figure 4: Two distinct ways to conceptualize the“particle-in-a-box”
problem. At top one imagines the wave function ψ(x) to have
been “periodically continuated” into regions external to the physical
box, while at bottom ψ(x) has been “clamped.” The former is the
approach standard to the textbooks, but the latter adheres more
closely to the physical facts of the matter.

ψ(x) = 1√
h

∫
e

i
�
pxϕ(p) dp

= 1
2π

∫
eikxφ(k) dk

φ(k) =
∫

e−ikxψ(x) dx

In the periodically continuated formalism we therefore have descriptions

ψn(x) =
√

2
a sin knx ←→ φn(k) = π

i

√
2
a

{
δ(k − kn)− δ(k + kn)

}
(12)

of the energy eigenstates |n). Notice that φn(k) is so singular that it is senseless
to speak of “momentum density” |φn(k)|2, and that to write∫ +∞

−∞
|ψn(x)|2 dx =

∫ +∞

−∞
|ϕn(p)|2 dp = 1

would in this context be to engage in meaningless frivolity.

Contrast that with the altogether more temperate situation that arises
when one adopts the clamped formalism. One then obtains

Φn(k) =
∫ a

0

e−ikxΨn(x) dx = nπ
√

2a
1− (−)ne−iak

n2π2 − a2k2
(13.1)

giving

|Φn(k)|2 = 4an2π2 1− (−)n cos ak

(n2π2 − a2k2)2
(13.2)
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Figure 5: Graphs of the functions |Φn(k)|2, with (reading down
the left column) n = 1, 2, 3, 4, 5. The respective major peaks are
positioned at k = ±nπ/a. At the right I have stretched the vertical
scale to reveal the small amplitude oscillations.

Here the numerator has contrived to kill the singularities which would otherwise
result from the numerator, to produce the non-pathological functions shown
above. We have∫ +∞

−∞
|Ψn(x)|2 dx = 1

2π

∫ +∞

−∞
|Φn(k)|2 dk

for which Mathematica supplies the remarkable information that (for all a)

= −(−)n
√

1
2nπ2J 3

2
(nπ) = 1 : n = 1, 2, 3, . . .
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Further computation supplies

〈E 〉n = �
2

2m 〈k
2〉n

〈k2〉n = 1
2π

∫ +∞

−∞
|Φn(k)|2 k2 dk

= linear combination of J 1
2
(nπ) and J 3

2
(nπ)

= (nπ/a)2 ≡ k2
n

Moreover

〈k4〉n = complicated Bessel expression, evaluates to (nπ/a)4 = 〈k2〉2n
〈k6〉n = complicated Bessel expression, evaluates to (nπ/a)6 = 〈k2〉3n
〈k8〉n = complicated Bessel expression, evaluates to (nπ/a)8 = 〈k2〉4n

...

Since Ψn(x) refers to an energy eigenfunction we expect the energy distribution
to be sharp; i.e., we expect all centered moments to vanish:〈

(E − 〈E 〉n)ν
〉
n = 0 : ν = 1, 2, 3, . . .

And indeed 〈
(E − 〈E 〉n)ν

〉
n =

(
�
2

2m

)ν〈(k2 − k2
n)
ν
〉
n = 0 (14)

by virtue of the equations just established. This striking result is profoundly
counterintuitive, for we naively expect sharp E to imply sharp p = ±

√
2mE.

By entrenched tradition, every author of an introductory quantum text
talks about the 1-dimensional particle-in-a-box problem, but I am aware of no
author who supports that discussion by an appeal to observational data—data
which would serve to discriminate between (12) and (13). Nor is it immediately
evident how such an experiment could be designed. But it should be possible
to obtain relevant data by observation of a “trapped electron/atom” in an
acceptable approximation to a cubic box.

Wigner functions for energy eigenstates in the periodic formalism. Feed (5.1)
into (1) to obtain

Pn(x, p) = 2
h

∫ +∞

−∞
2
a sin kn(x + ξ) e2ik ξ sin kn(x− ξ) dξ : k ≡ p/�

= 2
h

1
a

∫
e2ik ξ

{
cos 2knξ − cos 2knx

}
dξ

= 2
h

1
a

∫ {
1
2e

2i(k+kn)ξ + 1
2e

2i(k−kn)ξ − e2ik ξ · cos 2knx
}

dξ

= 2
h

1
a

{
π
2 δ(k + kn) + π

2 δ(k − kn)− πδ(k) ·
[
1− 2 sin2 knx

]}
= 1

2a

{
δ(p + pn) + δ(p− pn)− 2δ(p) + 2δ(p) · a |ψn(x)|2

}
(15)
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with pn = �kn = (�π/a)n. As a check on the accuracy of this rather strange
result we compute∫ +∞

−∞
Pn(x, p) dp = 1

2a

{
1 + 1− 2 + 2a |ψn(x)|2

}
Then ∫∫

entire phase plane

Pn(x, p) dxdp =
∫ +∞

−∞
|ψn(x)|2 dx =∞

But the classical phase space of the particle-in-a-box consists of a strip on the{
x, p

}
-plane, and when we integrate over the strip we obtain∫∫

classical phase strip

Pn(x, p) dxdp =
∫ a

0

|ψn(x)|2 dx = 1 (16)

According to (15) we have

〈x〉n =
∫∫

classical strip

Pn(x, p)x dxdp

=
∫ a

0

|ψn(x)|2x dx = 1
2a (17.1)

〈p〉n =
∫∫

classical strip

Pn(x, p) p dxdp

=
∫ a

0

1
2a

{
(−pn) + (+pn)− 0 + 0 · a |ψn(x)|2

}
dx = 0 (17.2)

〈E 〉n =
∫∫

classical strip

Pn(x, p) 1
2mp2 dxdp

= 1
2m

∫ a

0

1
2a

{
(−pn)2 + (+pn)2 − 0 + 0 · a |ψn(x)|2

}
dx = 1

2mp2
n (17.3)

—all of which make good sense. The marginal distributions implicit in (15)∫ a

0

Pn(x, p) dx = 1
2δ(p + pn) + 1

2δ(p− pn) (18.1)∫ +∞

−∞
Pn(x, p) dp = |ψn(x)|2 (18.2)

are also quite satisfactory (though the former cannot be expressed |ϕn(p)|2).
I give now an alternative derivation (which is to say: a radical revision of

our former derivation) of (15): The transform ϕn(p) of ψn(x)—in the familiar
sense

ψn(x) ≡
√

2
a sin knx = 1√

h

∫
e

i
�
pxϕn(p) dp

—is given (compare (12)) by

ϕn(p) =
√

2h
a

1
2i

{
δ(p− pn)− δ(p + pn)

}
(19)
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Feed this information into (4.2) to obtain

Pn(x, p) = 1
a

∫ {
δ(p− pn − ζ)− δ(p + pn − ζ)

}
· e2 i

�
xζ

{
δ(p− pn + ζ)− δ(p + pn + ζ)

}
dζ

= 1
2a

{
e2 i

�
x(p−pn)

[
δ(p− pn)− δ(p)

]
− e2 i

�
x(p+pn)

[
δ(p)− δ(p + pn)

]}
= 1

2a

{
δ(p + pn) + δ(p− pn)− δ(p) · 2 cos 2knx

}
= 1

2a

{
δ(p + pn) + δ(p− pn)− 2δ(p) + 4δ(p) sin2 knx

}
= 1

2a

{
δ(p + pn) + δ(p− pn)− 2δ(p)

}
+ δ(p) · |ψn(x)|2

which is a slight variant of (15). Here we made initial use of∫
f(x)δ(x− a)δ(x− b) dx = f(a)δ(a− b) : a �= b

and repeated use of f(x)δ(x− a) = f(a)δ(x− a); i.e., of eikxδ(x) = δ(x).

Wigner functions for energy eigenstates in the clamped formalism. We might—
in principle—proceed along the lines just sketched. Which is to say: we might
insert (10) into (4.1); alternatively we might insert its Fourier transform (see
again (13.1)) into (4.2). Both procedures lead, however, to integrals which
Mathematica finds awkward. So we manage “by hand” the effect of the clamps:
insert

Ψn(x) =
√

2
a sin knx

into
PΨ(x, p) ≡ 2

h

∫
Ψ∗(x + ξ) e2 i

�
pξ Ψ(x− ξ) dξ

and notice that the integrand vanishes unless it is simultaneously the case that

0 � x + ξ � a and 0 � x− ξ � a

From those conditions, as spelled out in Figure 6, we conclude that

Pn(x, p) = 4
ha




∫ +x

−x∫ +(a−x)

−(a−x)




sin kn(x + ξ)e2ik ξ sin kn(x− ξ) dξ

= 2
ha

{
etc.

}
e2ik ξ

{
cos 2knξ − cos 2knx

}
dξ (20)

according as 0 � x � 1
2a or 1

2a � x � a ; i.e., according as x ∈ � or x ∈ �.
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Figure 6: The x-axis runs ↔, the ξ-axis runs �. The red segment
represents the interior of the box. The downsloping yellow band
locates points at which 0 � x + ξ � a, while the upsloping blue band
locates points at which 0 � x− ξ � a. The Wigner function P (x, p)
arises from an

∫
dξ process that ranges on the gray intersect of the

two bands, and therefore splits naturally into a � fragment and a
� fragment.

Note that from cos 2kn(a− x) = cos 2knx it now follows that Pn(x, p) is
bilaterally symmetric:

Pn(a− x, p) = Pn(x, p) : all n

We therefore have

Pn(x, p) =




0 : x � 0
Fn(x, p) : 0 � x � 1

2a
Fn(a− x, p) : 1

2a � x � a
0 : a � x

(21)

with

Fn(x, p) ≡ 2
ha

∫ +x

−x
e2ik ξ

{
cos 2knξ − cos 2knx

}
dξ
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Mathematica now supplies6

Fn(x, p) = 2
h

{
ak cos 2knx sin 2kx− nπ sin 2knx cos 2kx

a2k2 − n2π2

− cos 2knx sin 2kx

ak

}
(22.1)

=
ap cos 2knx sin 2px

�
− �nπ sin 2knx cos 2px

�

π(a2p2 − �2n2π2)

− cos 2knx sin 2px
�

πap
(22.2)

by k ≡ p/�, and where (as always) kn ≡ nπ/a. We gain confidence in the
accuracy of this result from the computations which—which after major (!)
simplifications in the first instance—show the associated marginal distributions
to be given by

�

∫ +∞

−∞

{
right side of (22.1)

}
dk = 1

a − 1
a cos 2knx

= 2
a sin2 knx = |Ψn(x)|2 (23.1)

2
∫ 1

2a

0

{
right side of (22.1)

}
dx = complicated stuff− complicated stuff

= 1
h4an2π2 1− cosnπ cos ak

(n2π2 − a2p2)2
(23.2)

From (23.1) it becomes obvious that the Pn(x, p) which results from feeding
(22) into (21) is in fact normalized , while (23.2) reproduces the upshot of
(13.2), and when compared with (18.1) serves once again to dramatize the
profound distinction between the periodic and clamped formalisms. The latter
point, however, can hardly be made more vivid than is done by comparing the
alternative descriptions (15) and (21/22) of Pn(x, p) itself.

On following pages I present a portfolio of figures intended to illustrate the
meaning of (21/22). Similar figures can be found on pages 41–45 of Yoder’s
thesis.4 Notice, in relation to the bottom figures, that

Pn( 1
2a, p) = − 2

h cosnπ
{

sin ak
[ 1
ak

+ ak
n2π2 − a2k2

]}
has zeros at k = π

a · (1, 2, 3, . . . , n−1, •, n+1, n+2, . . .), and that its “dominant
outlying maximum” occurs near the “missing zero:” k = kn ≡ nπa .

We could now use results already in hand to develop descriptions of

〈x〉n =
∫∫

xPn(x, p) dxdp , 〈p〉n , 〈 1
2mp2〉n , etc.

. . .but won’t, since the results are totally unsurprising.

6 Use ExpToTrig to simplify the expressions constructed by Mathematica. I
have introduced color coding to indicate which terms come from where.
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Figure 7a: At the top is a representation of the function P1(x, p),
as given by (21/22). In the middle is the central section p = 0,
and at the bottom is the central section x = 1

2a . Notice that for
the particle-in-a-box problem even the groundstate of the Wigner
function displays regions of negativity. In constructing this and
subsequent figures I have set a = 1.
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Figure 7b: Representation of the Wigner function P2(x, p).
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Figure 7c: Representation of the Wigner function P3(x, p).
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Figure 7d: Representation of the Wigner function P4(x, p).
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Wigner functions for flat distributions in the clamped formalism. As was remarked
already on page 5, the flatness condition

|ψflat(x)|2 =
{

1/a : 0 < x < a
0 : elsewhere

entails
ψflat(x) = 1√

a
eiϕ(x) : ϕ(x) real

but leaves ϕ(x) arbitrary/indeterminate. An equivalent indeterminacy attaches
therefore to the associated Wigner function

Pflat(x, p) ≡ 2
ha

∫
e2 i

�
pξ ei

{
ϕ(x−ξ)−ϕ(x+ξ)

}
dξ (24)

It is important to notice that the (trivial) bilateral symmetry of the marginal
distribution

|ψflat( 1
2a + y)|2 = |ψflat( 1

2a− y)|2

does not imply/require bilateral symmetry of the associated wave function:

ψflat( 1
2a + y) = ψflat( 1

2a− y) holds only exceptionally

—holds, that is to say, if an only if it happens to be the case that

ϕ( 1
2a + y) = ϕ( 1

2a− y)

which in the present context is equivalent to the condition

ϕ(x) = ϕ(a− x) (25)

It follows that we must, in general, write

Pflat(x, p) =




0 : x � 0
Fflat (x, p) : 0 � x � 1

2a
Gflat(x, p) : 1

2a � x � a
0 : a � x

(26)

with

Fflat (x, p) ≡ 2
ha

∫ +x

−x
e2 i

�
pξ ei

{
ϕ(x−ξ)−ϕ(x+ξ)

}
dξ (27.1)

Gflat(x, p) ≡ 2
ha

∫ +(a−x)

−(a−x)
e2 i

�
pξ ei

{
ϕ(x−ξ)−ϕ(x+ξ)

}
dξ (27.2)

and will have bilateral symmetry of the Wigner function

Fflat (x, p) = Gflat(a− x, p)

if
ϕ(x− ξ)− ϕ(x + ξ) = ϕ(a− x− ξ)− ϕ(a− x + ξ) (28)

The point is that (25) and (28) impose distinct conditions upon ϕ(x).
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Look to the case ϕ(x) ≡ 0: trivially, both of the bilaterality conditions
(25/28) are in this case satisfied. From (26/27) we obtain

Pflat(x, p) =




0 : x � 0
Fflat(x, p) : 0 � x � 1

2a
Fflat(a− x, p) : 1

2a � x � a
0 : a � x

(29)

with
Fflat(x, p) = 2

ha

∫ +x

−x
e2ik ξ dξ

= 2 sin 2kx
ahk

(30)

Elementary calculation now returns∫
Pflat(x, p) dp =

{
a–1 : 0 < x < a
0 : otherwise

(31.1)

and supplies this new information:∫
Pflat(x, p) dx =

2(1− cos ak)
ahk2

(31.2)

Either of those marginal distribution formulæ can be used to produce∫∫
Pflat(x, p) dxdp = 1

The Wigner function described by (29/30) is shown in Figure 8.

Look next to the example ϕ(x) ≡ Kx. The bilaterality condition (28) is
satisfied (though (25) is not), so we again have (29), but with Fflat(x, p) given
now by

Fflat(x, p) = 2
ha

∫ +x

−x
e2ik ξei

{
K(x−ξ)−K(x+ξ)

}
dξ

=
2 sin 2[k −K ]x

ah[k −K ]
(32)

which gives back (30) in the case K = 0: the Wigner function shown in Figure 8
has been shifted along the p-axis. The marginal distribution (31.1) remains
unchanged, but (31.2) has become∫

Pflat(x, p) dx =
2
(
1− cos a[k −K ]

)
ah[k −K ]2

Look finally to the case ϕ(x) = (x − 1
2a)2/σ2. Now it is the bilaterality

condition (25) that is satisfied and (28) that is not; we must work therefore
from (26), with

Fflat (x, p) ≡ 2
ha

∫ +x

−x
e2 i

�
pξ ei

{
2(a−2x)ξ/σ2

}
dξ

= 2
ha

σ2 sin[2x(a− 2x + kσ2)/σ2]
(a− 2x + kσ2)

(33.1)

Gflat(x, p) = 2
ha

σ2 sin[2(a− x)(a− 2x + kσ2)/σ2]
(a− 2x + kσ2)

(33.2)
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Figure 8: Representation of the Pflat(x, p) encountered at (29/30).
Notice that we have automatic continuity at the box boundaries, and
these central sections:

Pflat( x , 0) = 2
h ·

{
2x/a : 0 � x � 1

2a
2(a− x)/a : 1

2a � x � a

Pflat( 1
2a, p) = 2

h ·
sin ka
ka
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Figure 9: Representation of the bilaterally asymmetric Pflat(x, p)
encountered at (26/33).

Mathematica is able, after a bit of a struggle, to reproduce (31.1), but reports
that ∫

Pflat(x, p) dx is borderline intractable

Additional Wigner distributions of the type Pflat(x, p) could be produced
in unlimited variety—that is the point of this discussion—but in most cases the
integrals will be intractable.

We have proceeded thus far in this discussion of (clamped) flat distributions
without reference to the (clamped) energy eigenstates Ψn(x) from which such
states—in all their variety—can be considered to be assembled. Generally, if

Ψ(x) =
∑
n

cnΨn(x)

then

PΨ(x, p) =
∑
m

∑
n

c∗mPmn(x, p)cn (34.1)

Pmn(x, p) ≡ 2
h

∫
Ψ∗
m(x + ξ) e2 i

�
pξ Ψn(x− ξ) dξ (34.2)

We note that the matrix P (x, p) ≡ ‖Pmn(x, p)‖ is hermitian, so can be written

P (x, p) = (real symmetric) + i(real antisymmetric)
≡ S (x, p) + i A (x, p) (35)
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At (6.2) we learned to write

Ψflat(x) =
∑
n

cnΨn(x) · eiϕ(x)

cn =
√

2
π

1− cosnπ
n

which is, as it stands, an imperfect/incomplete expansion, for the eiϕ(x)-factor
remains to be absorbed into redefined coefficients cn. Let us, for the purposes
of this discussion, agree to skirt that problem by setting ϕ(x) ≡ 0. We are led
then to

Pflat(x, p) = 2
π2

∑
m,n both odd

∑
4
mnPmn(x, p) (36)

Back up now and notice that (34.1) can be notated

PΨ(x, p) = ccct P (x, p) ccc

= ccct S (x, p) ccc + i ccct A (x, p) ccc

↓
= ccct S (x, p) ccc when ccc is real (or imaginary)

so in the present context—as distinguished from an important context that lies
ahead—we need not actually concern ourselves with the construction of A (x, p).
But will (and will also discuss cases in which m and n are not both odd). . . in
anticipation of that future need. We have

Smn(x, p) ≡ 4
ha

∫
sin

[
mπ

a (x + ξ)
]
sin

[
n π

a (x− ξ)
]
· cos 2kξ dξ

Amn(x, p) ≡ 4
ha

∫
sin

[
mπ

a (x + ξ)
]
sin

[
n π

a (x− ξ)
]
· sin 2kξ dξ

where the
∫

means
∫ +x

−x if 0 � x � 1
2a , and

∫ +(a−x)
−(a−x) if 1

2a � x � a . By extension
of notation introduced at (26), I will write

SFmn(x, p) = 4
ha

∫ +x

−x
etc · cos 2kξ dξ (37.1)

SGmn(x, p) = 4
ha

∫ +(a−x)

−(a−x)
etc · cos 2kξ dξ (37.2)

AFmn(x, p) = 4
ha

∫ +x

−x
etc · sin 2kξ dξ (37.3)

AGmn(x, p) = 4
ha

∫ +(a−x)

−(a−x)
etc · sin 2kξ dξ (37.4)

Mathematica can do the integrals, but (especially in cases of type G) produces
lengthy, difficult-to-simplify output; it was by graphical experimentation that
I was led to the following list of symmetry properties (some of which are more
nearly obvious than others, and for none of which will I offer analytical proof):
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SFmn (x, p) = +SFnm (x, p)
SGmn(x, p) = +SGnm(x, p)

AFmn (x, p) = −AFnm (x, p)
AGmn(x, p) = −AGnm(x, p)

(38.1)

SFmn (x, p) = +SFmn (x,−p)
SGmn(x, p) = +SGmn(x,−p)

AFmn (x, p) = −AFmn (x,−p)
AGmn(x, p) = −AGmn(x,−p)

(38.2)

SFmn(a− x, p) = (−)m+nSGmn(x, p)
AFmn(a− x, p) = −(−)m+nAGmn(x, p)

(38.3)

From (38.1) it follows, of course, that AFmm(x, p) = AGmm(x, p) = 0 for all
values of x and p. At p = 0 we have the bilateral antisymmetry conditions

SFmn (a− x, 0) = −SFmn (x, 0)
SGmn(a− x, 0) = −SGmn(x, 0)

}
provided m �= n

which, however, do not persist when p �= 0. The A-analogs of the preceding
statements are trivial, since from (38.2) it follows that

AFmn(x, 0) = AGmn(x, 0) = 0

We are in position now to write

Smn(x, p) =
{

SFmn(x, p) : 0 � x � 1
2a

(−)m+nSFmn(a− x, p) : 1
2a � x � a

Amn(x, p) =
{

AFmn(x, p) : 0 � x � 1
2a

−(−)m+nAFmn(a− x, p) : 1
2a � x � a

(39)

and to observe that

Smn(x, p) is bilaterally

{
symmetric

antisymmetric

}
according as m, n have

{
same

opposite

}
parity

Amn(x, p) is bilaterally

{
symmetric

antisymmetric

}
according as m, n have

{
opposite

same

}
parity

Note—in anticipation of things soon to come—that in all off-diagonal cases
an element of bilateral asymmetry is introduced by one or the other of the
functions Smn(x, p) and Amn(x, p).

Mathematica now supplies

SFmn(x, p) = 2
h

[
− cos

[
(m + n)πx

a
]{ sin

[
{2ka− (m− n)π}xa

]
2ka− (m− n)π

+
sin

[
{2ka + (m− n)π}xa

]
2ka + (m− n)π

}

+ cos
[
(m− n)πx

a
]{ sin

[
{2ka− (m + n)π}xa

]
2ka− (m + n)π

+
sin

[
{2ka + (m + n)π}xa

]
2ka + (m + n)π

}]
(40.1)
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AFmn(x, p) = 2
h

[
+ sin

[
(m + n)πx

a
]{ sin

[
{2ka− (m− n)π}xa

]
2ka− (m− n)π

− sin
[
{2ka + (m− n)π}xa

]
2ka + (m− n)π

}

− sin
[
(m− n)πx

a
]{ sin

[
{2ka− (m + n)π}xa

]
2ka− (m + n)π

− sin
[
{2ka + (m + n)π}xa

]
2ka + (m + n)π

}]
(40.2)

The expressions on the right can, of course, be written in a large number of
alternative ways; I have chosen designs that make transparent the important
fact that the zeros in the denominators are in every case tempered by associated
zeros in the numerators: limκ↓0

sinκx
κ = x.

Return now to (36), which has become

Pflat(x, p) = 2
π2

∑
m,n both odd

∑
4
mnSmn(x, p)

which we see already to be bilaterally symmetric, and an even function of p.
Mathematica responds to an initial ∑

m odd

with yards of hypergeometric output; simplification sufficient to permit closed
evaluation of ∑

n odd

seems out of the question. So I try a simpler problem: Mathematica supplies
the gratifying information that

�

∫ +∞

−∞
Smn dk = 2

a sinmπx
a sinnπx

a = Ψm(x)Ψn(x)

so we have∫
Pflat(x, p) dp = 2

π2
2
a

{ ∑
m odd

2
m sinmπx

a

}{ ∑
n odd

2
n sinnπx

a

}

=
[

4
π
√
a

∑
n odd

1
n sinnπx

a

]2

which we saw at (6.1) has the meaning

=
[

function of base a, height
√

a

]2

(41)



28 Particle-in-a-box problem in phase space formalism

0

1 -20

0

20

0

1

0

1 -20

0

20

0

1

0

1 -20

0

20

0

1

Figure 10: Representations of Smn(x, p) based upon (39/40.1).
The box size is a = 1, and—reading from top to bottom—

{
m,n

}
=




{
1, 3

}
: odd-odd, so bilaterally symmetric{

1, 4
}

: odd-even, so bilaterally antisymmetric{
2, 2

}
: even-even, so bilaterally symmetric

All such functions are even in p.



Wigner functions for flat distributions 29

0

1 -20

0

20

0

1

0

1 -20

0

20

0

1

0

1 -20

0

20

0

1

Figure 11: Representations of Amn(x, p) based upon (39/40.2).
The box size is a = 1, and—reading from top to bottom—

{
m,n

}
=




{
1, 3

}
: odd-odd, so bilaterally antisymmetric{

1, 4
}

: odd-even, so bilaterally symmetric{
2, 2

}
: even-even, so bilaterally antisymmetric

All such functions are odd in p.
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This is, so far as it goes, a pretty enough result. But I have failed in my effort
to reproduce (29/30).

Clamped formulation of quantum dynamics in a box. Quite generally, it is when
one turns from statics to dynamics that the energy eigenbasis displays its special
virtue: one “turns on time” and obtains

Ψ(x, 0) =
∑
n

cnΨn(x)

↓
Ψ(x, t) =

∑
n

e−iωntcnΨn(x) with ωn ≡ En/� (42)

For the box problem we found at (5.2) that En = En2 so

ωn = Ωn2 with Ω ≡ E/� = hπ/4ma2 (43)

The implied motion of the Wigner function becomes

PΨ(x, p; 0) = ccct P (x, p) ccc

↓
PΨ(x, p; t) = ccct(t) P (x, p) ccc(t)

=
∑
m,n

c∗mPmn(x, p) cn· ei (ωm−ωn) t (44)

Clearly, terms on the diagonal do not move: it is in precisely this sense that
“quantum dynamics is an interference effect.”

From (42) we obtain

|Ψ(x)|2 =
∑
m,n

c∗mΨ∗
m(x)Ψn(x) cn· ei (ωm−ωn) t (45)

to which a similar remark pertains. Notice that the preceding equation can
be obtained by sacrificing some of the information written into (44)—as a
description of the motion of the marginal distribution PΨ(x, t) ≡

∫
PΨ(x, p; t) dp.

An identical statement pertains to the motion of PΨ(p, t) ≡
∫
PΨ(x, p; t) dx;

this, however, I refrain from notating

|Φ(p)|2 =
∑
m,n

c∗mΦ∗
m(p)Φn(p) cn· ei (ωm−ωn) t

for what can be the meaning of Φn(p) ≡ (p|n) if, as in the present context,
eigenstates |p) of p do not exist?



Clamped formulation of quantum dynamics in a box 31

Look now to what these general propositions have to say about particle
motion in a box. Let us, in the interests of simplicity, suppose the c’s to be
real. Writing θmn ≡ (ωm− ωn)t we then have

PΨ(x, p; t) =
∑
n

cnPnncn +
∑
m>n

cm
[
Pmne

iθmn + Pnme−iθmn
]
cn

=
∑
n

cnSnncn +
∑
m>n

cm
[

Smn
(
eiθmn + e−iθmn

)
+ iAmn

(
eiθmn − e−iθmn

)]
cn

=
∑
n

cnSnncn + 2
∑
m>n

cm
[
Smn cos θmn −Amn sin θmn

]
cn (46)

which in the limit t ↓ 0 gives back

=
∑
n

cnSnncn + 2
∑
m>n

cmSmncn =
∑
m,n

cmSmncn

Explicit descriptions of Smn and Amn are obtained from (39/40). In particular,
Amn(x, p) was found at (38.2) to be an odd function of p, so∫

Amn(x, p) dp = 0

while the argument that gave (41) supplied∫
Smn (x, p) dp = 2

a sinmπx
a sinnπx

a (47)

= Ψm(x)Ψn(x)

It follows therefore from (46)—as also (directly) from (42)—that the motion of
the marginal distribution

PΨ(x, t) ≡
∫

PΨ(x, p; t) dp = |Ψ(x, t)|2

can be described

|Ψ(x, t)|2 =
∑
n

cncn|Ψn(x)|2 + 2
∑
m>n

cmcnΨm(x)Ψn(x) cos θmn

= 2
a

{ ∑
n

cncn sin2 nπx
a + 2

∑
m>n

cmcn sinmπx
a sinnπx

a · cos θmn

}

=
{

sum of static terms, bilaterally symmetric in all cases
}

(48)

+




sum of dynamic terms, bilaterally symmetric/antisymmetric
and therefore “blink” or “slosh” according as m and n have the
same or opposite parity: i.e., according as m + n is even/odd




The descriptive text here follows from the elemantary observation that Ψn(x)
is bilaterally symmetric/asymmetric according as n is odd/even. Notice that
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from the orthonormality of the Ψn(x) it follows that

∫
|Ψn(x)|2 dx =

∑
n

cncn +
{

no contribution from dynamic terms
}

= 1

Having equal claim to out attention—but rather more interesting in some
technical respects—is the marginal distribution

PΨ(p, t) ≡
∫

PΨ(x, p; t) dx : not expressible |Φ(p, t)|2

Bilateral symmetry serves to kill many of the integrals now presented by the
right side of (46): from (39) it follows that

∫
Smn (x, p) dx =




2
∫ 1

2a

0
SFmn(x, p) dx : m and n have same parity

0 : m and n have opposite parity∫
Amn(x, p) dx =




0 : m and n have same parity

2
∫ 1

2a

0
AFmn(x, p) dx : m and n have opposite parity

So we have

PΨ(p, t) =
∑
n

cncn

{
2
∫ 1

2a

0

SFnn(x, p) dx

}

+ 2
∑
m>n

same parity

cmcn

{
2
∫ 1

2a

0

SFmn(x, p) dx

}
cos θmn

− 2
∑
m>n

opposite parity

cmcn

{
2
∫ 1

2a

0

AFmn(x, p) dx

}
sin θmn (49)

At (38.2) it is reported that the S-terms are p -even in all cases, and that the
A-terms are p -odd. We therefore have

=
{

sum of static terms, p -even in all cases
}

(50)

+
{

sum of p -even blinkers: m and n of same parity
}

+
{

sum of p -odd sloshers: m and n of opposite parity
}

Mathematica declines to provide general descriptions of the
∫

’s in braces, but
has no difficulty when m and n are assigned any specific integral values. We



Clamped formulation of quantum dynamics in a box 33

find, for example, that

∫ 1
2a

0

SF11(x, p) dx = 2
ha

π2
[
1 + cos ak

]
(ak − π)2(ak + π)2∫ 1

2a

0

SF22(x, p) dx = 2
ha

(2π)2
[
1− cos ak

]
(ak − 2π)2(ak + 2π)2∫ 1

2a

0

SF33(x, p) dx = 2
ha

(9π)2
[
1 + cos ak

]
(ak − 3π)2(ak + 3π)2

...∫ 1
2a

0

SFnn(x, p) dx = 2
ha

(nπ)2
[
1− (−)n cos ak

]
(ak − nπ)2(ak + nπ)2

(51.1)

and, provided m and n have the same parity,7

∫ 1
2a

0

SFmn(x, p) dx

= 2
ha

µmnπ2
[
1− (−)mn cos ak

]
(ak −mπ)(ak − nππ)(ak + nπ)(ak + mπ)

(51.2)

where the multiplier

µ ≡ 3
2 − (−)mn 1

2 =
{ 2 if m and n are both odd

1 if m and n are both even

Finally, if m > n have opposite parity8 then

∫ 1
2a

0

AFmn(x, p) dx

= (−)n 2
ha

mnπ2 sin ak

(ak −mπ)(ak − nππ)(ak + nπ)(ak + mπ)
(51.3)

and the sign is reversed if m < n. I must emphasize that the general proposi-
tions (51) have not been properly “derived,” but have been inferred from specific
instances. I have high confidence, however, in their validity. Note that they
make manifest the p -evenness/oddness of

∫
Smn(x, p) dx and

∫
Amn(x, p) dx.

Graphical analysis of (51)—see below—indicates that the zeros in the
denominators always coincide with zeros in the numerators, and so never give
rise to singularities.

7 Happily we have no present need of the formula appropriate to cases in
which m and n have the opposite parity, which is much more complicated, and
grows ever more complicated as m and n become larger.

8 If m > n have the same parity then one encounters again the situation
described in the preceding footnote.
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Figure 12: Graphs of functions of diagonal type
∫
Snn(x, p) dx,

taken from (50.1) with a = h = 1. They are presented in the array

{
1, 1

} {
2, 2

}
{
3, 3

} {
4, 4

}
Note the p-evenness, non-negativity and absence of singularities.

Introduction of (51) into (49) yields a result too complicated to comprehend
except—in particular instances—graphically. It should, however, be possible to
establish that

∫
PΨ(p, t) dp = 1, which would test (weakly) the accuracy of the

complicated formula in question. To that end, we notice that it follows already
from the p -oddness of

∫
Amn(x, p) dx that

∫∫
Amn(x, p) dxdp = 0 : m > n have opposite parity

Computation9 leads, moreover, to the conclusion that

∫∫
Smn(x, p) dxdp = 0 : m > n have the same parity

9 Mathematica tends to trip on the seeming singularities, and needs delicate
coaxing.
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Figure 13: Graphs of functions of the off-diagonal type∫
Smn(x, p) dx, taken from (50.2). They are presented in the array{

3, 1
} {

4, 2
}

{
5, 1

} {
5, 3

}
Note here again the p-evenness and absence of singularities.
Non-negativity has, however, been lost: the area under each such
curve is zero.

and in cases on the diagonal supplies (see again page 11)∫∫
Smn(x, p) dxdp =

∫ +∞

−∞
2
ha

(nπ)2
[
1− (−)n cos ak

]
(ak − nπ)2(ak + nπ)2

�dk

= 2
h�

[
− (−)n

√
n/2 π2J 3

2
(nπ)

]
= 1 : n = 1, 2, 3, . . .

So from (49) we are in fact led to the anticipated result∫
PΨ(p, t) dp =

∑
n

cncn +
{

no contribution from dynamic terms
}

= 1

To clarify the situation as it has developed, let us suppose Ψ(x) has the
especially simple—but otherwise fairly representative—design

Ψ(x) = c2Ψ2(x) + c3Ψ3(x) + c4Ψ4(x) (52.0)

where the real c’s satisfy c2
2 +c2

3 +c2
4 = 1 but are otherwise arbitrary. From (46)
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Figure 14: Graphs of functions of the off-diagonal type∫
Amn(x, p) dx, taken from (50.3). They are presented in the array

{
2, 1

} {
3, 2

}
{
4, 1

} {
4, 3

}
Note again the absence of singularities. Also that p-evenness has
become now p-oddness: non-positivity is therefore automatic, and
the vanishing of the integrated area has become manifest.

we then have

PΨ(x, p; t) = c2
2S22 + c2

3S33 + c2
4S44 (52.1)

+ 2c3c2

[
S32 cos θ32 −A32 sin θ32

]
+ 2c4c2

[
S42 cos θ42 −A42 sin θ42

]
+ 2c4c3

[
S43 cos θ43 −A43 sin θ43

]
where the Smn(x, p) and Amn(x, p) are supplied by (39/40) and where

θmn ≡ (ωm − ωn)t = (m2 − n2)·Ωt

Ω ≡ E/� = hπ/4ma2

Integration on p supplies, according to (48), the moving marginal distribution
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∫
PΨ(x, p; t) dp = 2

a

{
c2
2 sin2 2πx

a + c2
3 sin2 3πx

a + c2
4 sin2 4πx

a (52.2)

+ 2c3c2 sin 3πx
a sin 2πx

a · cos θ32

+ 2c4c2 sin 4πx
a sin 2πx

a · cos θ42

+ 2c4c3 sin 4πx
a sin 3πx

a · cos θ43

}

Integration on x leads, on the other hand, to the complementary moving
marginal distribution, which according to (49/51) is given by

∫
PΨ(x, p; t) dx (52.3)

= 2a
h

{
c2
2

(2π)2(1− cos ak)
(ak − 2π)2(ak + 2π)2

+ c2
3

(3π)2(1 + cos ak)
(ak − 3π)2(ak + 3π)2

+ c2
4

(4π)2(1− cos ak)
(ak − 4π)2(ak + 4π)2

+ 2c4c22
4 · 2π2(1− cos ak)

(ak − 4π)(ak − 2π)(ak + 2π)(ak + 4π)
cos θ42

− 2c3c22
3 · 2π2 sin ak

(ak − 3π)(ak − 2π)(ak + 2π)(ak + 3π)
sin θ32

+ 2c4c32
4 · 3π2 sin ak

(ak − 4π)(ak − 3π)(ak + 3π)(ak + 4π)
sin θ43

}

In both (52.2) and (52.3) we expect the c42-term to be a “blinker,” and the c32

and c43-terms to be “sloshers.” Finally we have

θ32 = 5 · Ωt

θ42 = 12 · Ωt

θ43 = 7 · Ωt

Computer animation is clearly the method of choice if one’s objective is to
gain a vivid sense of what equations (52) are trying to tell us. As first steps
toward that objective one might
• set a = h = 1, Ω = 2π
• assign interesting specific values to c32, c42 and c43

but would still confront the questions how large to set the increment ∆t? how
many frames N to include in the filmstrip? One wants also to make the mesh
size small enough to capture relevant spatial detail (it was that consideration
that led me to assign small values to m and n), and must approach these
interrelated issues with an eye to (i) what they imply about total computation
time and (especially) (ii) the demand they impose upon available memory. It
is such practical considerations that motivate the following remarks:
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The period of oscillation in the mn -mode is given by

τmn = 2π
(m2 − n2)Ω

so the times “natural” to the circumstances at hand are

τ42 = 2π
12Ω

< τ43 = 2π
7Ω

< τ32 = 2π
5Ω

It is evident that at time

t = 12 τ42 = 7 τ43 = 5 τ32 = 2π/Ω

• the 42-mode will have completed 12 cycles
• the 43-mode will have completed 7 cycles
• the 32-mode will have completed 5 cycles

and the trio will be back in synchrony. Acceptable temporal resolution would
be achieved if we set

∆t = briefest natural time
10

= 2π
120Ω

and drew film frames at times

tj = 0 + j∆t : j = 0, 1, 2, . . . , 119

. . .which makes for a long, memory-intensive movie. The briefest 3-state movie
(80 frames) arises from

t = 8 τ31 = 5 τ32 = 3 τ21 = 2π/Ω

The situation becomes rapidly worse as the number of states increases, for while
the sequence

(n + 2)2 − n2 proceeds 8, 12 , 16, 20, 24, . . .

we upon inclusion of progressively more states encounter

(n + 3)2 − n2 proceeds 15, 21, 27, 33, 39, . . .

(n + 4)2 − n2 proceeds 24, 32, 40, 48, 56, . . .

and it becomes worse still if the participating states are not contiguously indexed
(a circumstance which would introduce extra “spread” into the value of m2−n2).

Thus are we led to look more seriously to 2-state superpositions, for which

(n + 1)2 − n2 proceeds 3, 5, 7, 9, 11, 13, . . .

and which—since “it takes two to interfere”—are simplest possible from a
quantum dynamical point of view. Relevant formulæ can be obtained from
(52) by setting c2 else c3 else c4 equal to zero. Such systems possess a single
“natural time,” and the “synchrony problem” is absent.
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The real solutions of c2
2 + c2

3 + c2
4 = 1 associate naturally with points on the

“unit sphere in 3-dimensional ccc-space,” and therefore can be neatly identified/
distinguished by specification of a pair of “spherical mixing angles,” which I
will (on the principle “odd man out”) take to be defined in such a way

c2 = cosα cosβ

c3 = sinα

c4 = cosα sinβ

that c3 vanishes “on the equator.”

In a set of Mathematica notebooks attached as appendices to these notes10

I present 2-state and 3-state animations based upon (52). Much shown there
conforms to expectation: we find, for example that the x-marginal and
p -marginal distributions that arise from superpositions of (mixed-parity) types


 c2

c3

0


 else


 0

c3

c4


 both “slosh”

while those that arise from superpositions of the (same-parity) equatorial type


 c2

0
c4


 both “blink”

And we find that the x-marginal distributions are in all cases everywhere
non-negative (as proper distributions are supposed to be). We find, moreover,
that in all cases PΨ(x, p ; t) exhibits a chirality of the � sense associated with
the classical physics of a particle-in-a-box. But we encounter also a major
surprise:

We find that p -marginal distributions sometimes assume negative values,
and so properly are not “distributions” at all. This curious development can be
understood as a ramification of the celebrated fact that the Wigner function is
itself not positive-semidefinite—a circumstance which we would be protected if
it were possible to write

∫
PΨ(x, p ; t) dx = |Φ(p, t)|2

but, as I have several times remarked, the clamped formulation of the particle-
in-a-box problem provides no such Φ(p, t).

10 The notebooks bear titles which are variants of “Box Animations.nb”
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A further surprise: We find that the time-averaged p -marginal distributions
are everywhere non-negative, are proper distributions. The analytical proof
that this is so—an effort motivated in this instance by graphic analysis—is
fussy, and will be omitted.

Periodic aspects of the classical/quantum box problem. Classically, a particle in
a box is effectively a clock, going “tick . . . tock . . . tick . . . tock . . . tick . . . ” with
period

τ = 2a
speed

= 2a√
2E/m

and angular frequency

ω = 2π/τ = 2π

√
E

2ma2

The appearance of E on the right informs us that such “box oscillators” are
anharmonic.

A pair of such systems, if started at the same time, will speak

τ1 : tick . . . tock . . . tick . . . tock . . . tick . . .

τ2 : tick . . . . . . tock . . . . . . tick . . . . . . tock . .

with occasional coincidence if an only if there exist least integers n1 and n2

such that
τcoincidence ≡ n1τ1 = n2τ2

but this requires that τ1/τ2 be rational, which in classical physics would be an
unnatural state of affairs.

Suppose, however, we assign to E the values borrowed from quantum
mechanics: En = En2. We then have

ωn = 2π

√
mE

2a2
· n = πh

2ma2
· n

and find that the coincidence condition is always satisfied.

Quantum mechanics ascribes to such a system an angular frequency which
is, on the other hand, given by

ωn = (E/�) · n2

That, however, refers not to “motion” but to an unphysical “buzz;” quantum
motion is, as I have repeatedly stressed, an interference effect, evident only
when the quantum state Ψ has been assembled by superposition of (at least)
two energy eigenstates—call them Ψm and Ψn ; it is then only the frequency
difference

∆ω = (E/�) · (m2 − n2)
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that has observable consequences. Suppose m = n + 1. Then

∆ω = (E/�) · (2n + 1) ∼ (2E/�) · n if n is large

= πh

2ma2
· n

Thus does the n2-dependence characteristic of the quantum theory go over into
the linear n-dependence characteristic of the classical theory. Note, however,
the importance of the assumption that Ψm and Ψn are proximate states; if
there were more remote neighbors m = n + ν we would have obtained

∆ω ∼ ν ·
[

πh

2ma2
· n

]
∼ ν ·

[
πh

2ma2
· (n + ν) + n

2

]
which describes integral multiples (harmonics) of the (mean) classical frequency
that become progressively higher as the neighbors become more remote.

But if ν = 2 (or is even) then ∆ω refers not to sloshing but to a “blinking”
that has no classical counterpart. One of the animations makes this point very
clearly.

Wavepackets in a box. Equations (52), and the animations based upon them,
allude to the very low energy quantum physics of a particle in a box, to
events deep within the quantum realm—events which, remarkably, are found
nevertheless to prefigure events (most notably: rectangular �-circulation in
phase space) most characteristic of the classical physics of such systems. Of
greater interest to me, however, is the high energy quantum physics, the more
pronouncedly “semi-classical” physics that presumably follows from (46) when
the c’s are assigned values that become predominant in the vicinity of some
large n (see the following figure) . . .but at present I lack the computer resouces
required to penetrate such a regime. My effort here, therefore, will to to attempt
to construct an analytical end-run around that difficulty. I have incidental
interest also in discovering whether certain fairly standard devices survive the
imposition of clamping (extinction of ψ(x) outside of the box), and in trying to
clarify the “evolution of flatness.”

Let f(x) be a continuous function defined on the entire real line and
endowed with whatever modestly nice properties may be required to make the
following manipulations work. Construct

fodd(x) ≡ f(x)− f(−x)

= 2
{
odd part of f(x)

}
Clearly fodd(0) = 0.11 Construct

g(x) ≡
+∞∑
j=−∞

fodd(x + 2ja) : convergence assumed

11 fodd(x) would vanish identically if f(x) were even, which we will assume
not to be the case.
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50

Figure 15: A cn-assignment that would presumably give rise to
more distinctly “semi-classical” quantum physics, but that lies well
beyond my present means to explore numerically.

which is manifestly periodic

g(x + 2a) = g(x) : all x

and therefore vanishes at . . . ,−4a,−2a, 0 ,+2a,+4a, . . . From

g(a) = −g(−a) because g(x) is odd
g(a) = +g(−a) because g(x) is periodic, with period 2a

we see that g(x), if continuous, must vanish also at the midpoints of those
intervals; in short,

g(ja) = 0 : j = 0,±1,±2, . . .

so in particular we have nodes g(0) = g(a) = 0 at the ends of the “physical
interval” or “box” 0 � x � a. All of which is entirely familiar from the
elementary physics of strings: if f(x − vt) describes a pulse or wavepacket
gliding to the right along an infinite string, then

g(x, t) ≡
∞∑

j=−∞

{
f(x + 2ja− vt)− f(−x + 2ja− vt)

}
(55)

describes countermoving periodic trains of such pulses, and within the box looks
like a single pulse bouncing back and forth, reversing sign with each pulse. The
idea is animated in an appendix. Multiplication by the “box function”

B(x) ≡
{ 1 : 0 � x � a

0 : elsewhere
(56)
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extinguishes the wave outside the bounds of the box

g(x, t) �−→ G(x, t) ≡ B(x) · g(x, t) (57)

and thus achieves passage from the “periodically continuated formalism” to the
“clamped formalism.”

Look to the Fourier analytic aspects of the preceding discussion. Starting
from

f(x) =
∫ +∞

−∞
φ(k)eikx dk

we extract

fodd(x) =
∫ +∞

−∞
φodd(k)eikx dk with φodd(k) ≡ φ(k)− φ(−k)

=
∫ +∞

−∞
φ(k)2i sin kx dk

We then construct g(x), the established periodicity properties of which permit
us to write

g(x) =
∞∑
n=1

gn sinnπx
a =

∫ +∞

−∞
γ(k)eikx dk (58.1)

γ(k) =
∞∑
n=1

gn
1
2i

{
δ(k − nπ

a )− δ(k + nπ
a )

}

But

gn = 1
a

∫ 2a

0

g(x) sinnπx
a dx

= 1
a

∫ +∞

−∞
fodd(x) sinnπx

a dx

= 1
2πa

∫∫ +∞

−∞
φodd(k)

ei(k+nπ/a)x − ei(k−nπ/a)x

2i
dxdk

= 1
2ia

∫ +∞

−∞
φodd(k)

{
δ(k + nπ

a )− δ(k − nπ
a )

}
dk

= 1
2ia

{
φodd(−nπ

a )− φodd(nπ
a )

}
= i

a φodd(nπ
a )

so

γ(k) = 1
2a

∞∑
n=1

φodd(nπ
a )

{
δ(k − nπ

a )− δ(k + nπ
a )

}
(58.2)

The transformation f(x) �−→ g(x) has by Fourier transformation assumed a
form φ(k) �−→ γ(k) in which only certain specific wave numbers survive.
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Clamping, which was achieved by multiplication in x space, will be achieved
by convolution in k space: we have

g(x) =
∫

γ(k) eikx dk

and (formally)12

B(x) = ϑ(x)− ϑ(x− a) = 1
2πi

∫
1− e−ika

k
eikx dk ≡

∫
β(k) eikx dk

so
G(x) ≡ B(x)g(x) =

∫
Γ (k)eikx dk (59.1)

where

Γ (k) =
∫

β(�)γ(k − �) d�

= 1
2πi

1
2a

∞∑
n=1

φodd(nπ
a )

∫
1− e−i�a

�

{
δ(k − �− nπ

a )− δ(k − � + nπ
a )

}
d�

= 1
2πi

1
2

∞∑
n=1

φodd(nπ
a )

{
1− e−i(ka−nπ)

ka− nπ
− 1− e−i(ka+nπ)

ka + nπ

}
(59.2)

The important points to notice are that
• k -discreteness has evaporated—a casualty of clamping;
• the singularities on the right (situated at the formerly prefered k values,

were δ-spikes used to stand) are illusory—have in fact become zeros.

When, in my introduction to this section, I expressed an “incidental interest
. . . in . . . certain fairly standard devices” I had in mind the fact that some of
the preceding arguments (those up to the point of clamping, at the top of this
page) are close variants of those which give rise to the Poisson Summation
Formula, which I digress now to review.13 From F (x) construct the periodic
function

G(x) ≡
∞∑

j=−∞
F (x + ja) : period a

=
∞∑

k=−∞
Gk e

i 2πk xa

12 In the following equation ϑ(x) is the Heaviside step function:

ϑ(x) ≡
∫ x

−∞
δ(x) dx =

{ 0 : x < 0
1 : x > 0

13 I follow R. Courant & D. Hilbert, Methods of Mathematical Physics:
Volume I (), pages 76–77, which I have modified so as to achieve direct
contact with the result quoted in Encyclopedic Dictionary of Mathematics
(2nd edition ), §192-C.
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Use

Gk = 1
a

∫ a

0

e
−i 2πk xaG(x) dx

= 1
a

∫ +∞

−∞
e
−i 2πk xaF (x) dx : this is the essential trick

to obtain

∞∑
j=−∞

F (x + ja) = 1
a

∞∑
k=−∞

e
i 2πk xa

∫ +∞

−∞
F (x)e−i 2πk

x
a dx

=
√

2π
a

∞∑
k=−∞

e
i 2πk xa Φ(bk)

b ≡ 2π
a

where Φ(k) = 1√
2π

∫
F (x)e−ikx dx is the Fourier transform of F (x). Finally set

x = 0 to obtain the “Poisson summation formula”

√
a

∞∑
j=−∞

F (ja) =
√

b

∞∑
k=−∞

Φ(kb) : ab = 2π (60)

Since a great many interpretations can be assigned to F (x) this provides a
very powerful tool for converting one series into another. The new series may
converge more rapidly or offer other analytical advantages.

Let us see what the results now in hand have to say in an illustrative
concrete case—specifically: the case of a Gaussian wavepacket. In order to
underscore certain key distinctions I look first to the classical motion of a
Gaussian pulse on a string, then to the quantum dynamics of a Gaussian
wavepacket.

To describe the initial shape of the classical pulse we write

f(x, 0) = 1
σ
√

2π
e−

1
2

[x
σ

]2

: normalized initial Gaussian pulse (61.1)

To launch the wavepacket into motion along a string of infinite length we form

f(x, t) = 1
σ
√

2π
e−

1
2

[x− ct
σ

]2

: launched Gaussian pulse (61.2)

which is a solution of the wave equation: fxx − c−2ftt = 0. To model our
presumption that the pulse lives on a string of finite length 0 � x � a we
construct countermoving periodic trains of such pulses:

g(x, t) ≡
∞∑

j=−∞

1
σ
√

2π

{
e
− 1

2

[x + 2ja− ct
σ

]2

− e
− 1

2

[−x + 2ja− ct
σ

]2}
(61.3)
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Manifestly, x = 0 and x = a are persistent nodes:

g(0, t) = g(a, t) = 0 : all t

. . .but notice:
g(x, 0) = 0 for all x

and this situation recurs whenever ct/2a is an integer. At such moments none of
the energy resident in the string is energy of deformation—all is kinetic (which,
physically, is an entirely acceptable state of affairs). Finally we clamp the wave
(discard the the periodic replications of the physics that live only in the mind,
beyond the ends of the physical string): we form

G(x, t) = B(x) · g(x, t) =
{

g(x, t) : 0 � x � a
0 : elsewhere

Turn now to the quantum dynamics of a mass m that moves freely and
(as we shall initially assume) unrestrictedly in one dimension. To describe a
“standing Gaussian wavepacket” in such a context we might write14

ψ(x, t) =
[

1

σ[1+i(t/τ)]
√

2π

] 1
2

exp
{
− 1

4

(x− x0)2
σ2[1+i(t/τ)]

}
(62.1)

where σ is a positive real constant, τ = 2mσ2/� is an associated “natural time”
and x0 marks the “mean point of departure.” The wave function just described
satisfies the Schrödinger equation −(�/2m)ψxx = i�ψt and produces a Gaussian
distribution

|ψ(x, t)|2 = 1

σ(t)
√

2π
exp

{
− 1

2

[x− x0
σ(t)

]2} (62.2)

of growing dispersion
σ(t) ≡ σ

√
1 + (t/τ)2 (63)

Were we to “launch” such a wavepacket we would obtain15

ψ(x, t) =
[

1

σ[1+i(t/τ)]
√

2π

] 1
2

exp
{
− 1

4

(x− x0)2
σ2[1+i(t/τ)]

(64.1)

+ i
�

1

1+i(t/τ)

[
℘(x− x0)− Et

]}
giving

|ψ(x, t)|2 = 1

σ(t)
√

2π
exp

{
− 1

2

[ (x− x0)− vt
σ(t)

]2}
(64.2)

14 See, for example, §2 of my “Gaussian wavepackets” ().
15 See §5 in the note just cited for elaborate discussion of the surprisingly

intricate details. Launching a Gaussian quantum wavepacket is not so easy as
launching a Gaussian pulse down a string: the former moves dispersively, the
latter rigidly; the former can be accomplished by Galilean transformation, but
the entails what is effectively a Lorentz transformation.
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Here ℘ ≡ mv where v is the prescribed drift velocity of the wavepacket, and
E ≡ ℘2/2m. To create persistent nodes at the boundaries of the box we must
first seek protection from the possibility that ψ(x, t) ever becomes even in x,
for in that case the ensuing formalism collapses into empty triviality: we would
then be led to a clamped Ψ(x, t) that vanishes everywhere, which is quantum
mechanically disallowed. Evenness is seen to require that it be simultaneously
the case that

(x− x0)2 = (−x− x0)2 and ℘(x− x0) = ℘(−x− x0)

We are led thus to require that x0 �= 0, which upon construction of the odd
periodic function

g(x, t) ≡
∞∑

j=−∞

{
ψ(x + 2ja, t)− ψ(−x + 2ja, t)

}
(65)

becomes the requirement that 0 < x0 < a: the particle cannot be launched from
either end of the box.16 Our plan now is to install the clamps

g(x, t) �−→ G(x, t) ≡ B(x) · g(x, t)

and then to normalize:

G(x, t) �−→ Ψ(x, t) =A(t) ·G(x, t) (66)

A(t) ≡
[ ∫ a

0

|G(x, t)|2 dx

]− 1
2

Which is more easily said than done, even when ψ(x, t) has been endowed with
the nice properties of a Gaussian. Before I turn to the oppressive details I
digress to interject some historical remarks:

In  Einstein submitted an essay for publication in Scientific Papers
presented to Max Born on his retirement from the Tait Chair of Natural
Philosophy in the University of Edinburgh in which he argues that “in the
limiting case of macroscopic dimensions the quantum mechanical solution [of
the problem of a “ball bouncing between two walls”] does not become the
classical motion.” There followed an exchange of letters, which are reproduced
(with Born’s annotations) as

105: Born to Einstein  November 
106: Einstein to Born  December 
107: Born to Einstein  December 
108: Einstein to Born  January 
109: Born to Einstein  January 
110: Einstein to Born  January 
111: Born to Einstein  January 

112: Pauli to Born  March 
115: Pauli to Born  March 
116: Pauli to Born  April 

16 This restriction arises simply from the symmetry of our chosen wavepacket,
and would evaporate if we adopted an asymmetric ψ(x, t). The point, therefore,
is technical/incidental, not deeply physical.
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in The Born–Einstein Letters (: Forward by Bertrand Russell, Introduction
by Werner Heisenberg) and deserve to be more widely known. In 105 Born
claims that Einstein failed to recover classical motion because he chose the
“wrong quantum state” (an energy eigenstate); claims Einstein should have
watched the quantum motion of a wavepacket of initially small ∆x and ∆p and
made m→∞ to arrest the growth of uncertainty (beyond that expected already
classically if ∆x and ∆p are—though small—non-zero) . . . and announces his
intention to “carry out a thorough calculation . . .with my collaborator (which
is not easy to do formally).”17 But in an editorial remark he observes that
in responding thus he missed Einstein’s main point . . .which Einstein restates
in 106. One should not have to specialize the state according to Einstein, else
one would be forced to the conclusion that classical mechanics “cannot claim
to describe, even approximately, most of the [macro-events that are quantum
mechanically conceivable]” . . . and should “be very surprised if a star, or a fly,
seen for the first time, appeared even to be quasi-localized.”18

In 107 Born reports that he has completed the promised “thorough
calculation”—without the help of his assistant (though “it is not at all easy,
and I really had to rack my brain”)—that all worked out exactly as he had
asserted it would, and that he is preparing to submit the paper for publication
in Proceedings of the Royal Society with instructions that the editor is to accept
whatever remarks Einstein might care to add. But in 108 Einstein states that
“Your concept is completely untenable” and that “I do not want to take part
in any further discussion, such as you seem to envisage. I content myself with
having expressed my opinion clearly.” Born’s MS was eventually published
elsewhere,19 and Einstein did not immediately honor his own stated intention
. . .perhaps because Born had been in contact with Pauli, who was then at the
Institute for Advanced Studies and began himself to discuss these matters with
Einstein, face to face. In commentary on three letters in which Pauli reports
the upshot of those conversations, Born quotes from an (unpublished) letter,
dated  December , in which Pauli acknowledges receipt of a copy of the

17 That effort resulted finally in M. Born & W. Ludwig, “Zur Quanten-
mechanik des kräftefreien Teilchens,” Zeitschrift für Physik 150, 106 (1956),
but it had to await the injection of certain technical ideas by Pauli, and did
not appear in print until after Einstein had died ( April ). That paper
has been my own principal source: see pages 9–32 in applications of the
feynman formalism to free particle systems –.

18 Einstein goes on to observe that—setting aside that problem—for Born’s
position to make sense ψ must refer to an ensemble (Born agrees) and that
quantum mechanics must for that reason be held to be “incomplete” (Born
disagrees, thinks that Einstein was handicapped by “inadequate knowledge of
quantum mechanics”).

19 It appears under the title “Continuity, determinism and reality” as a
contribution to a collection of papers honoring Niels Bohr’s 70th birthday:
Kong. Dansk. Videnskabernes Selskab, Mathematiskfysiske Meddelelser 30,
1 (1955).



Wavepackets in a box 49

Bohr festschrift, reports the death of Hermann Weyl, and remarks that “I had
used the mathematics of the example of the mass point between two walls, and
of the wavepackets which belong to it, in my lectures in such a way that the
transformation formula of the theta-functions comes into play. But that is a
mere detail.”20 Born comments that “It was more than a detail. It shows that
Pauli had long been familiar with all that I had to say . . .His remark about the
theta-function made me take up this example again.” It was thus that Born &
Ludwig16 came to be written. Regarding the essential use made there of the
“Jacobi theta transformation” (which Born/Ludwig use to pass smoothly from
the “wave representation” to the “particle representation”), Born remarks that
he learned of the technique from Paul Ewald.21, 22

Born concludes his editorial remarks with the observation that “Although
this problem deals with a case which is physically trivial and unimportant
in practice, it gives a clear insight into the connection between classical and
quantum mechanics, and seems to me to be more useful than any
philosophizing about the question. It should be brought into, and discussed
in, every elementary lecture about quantum mechanics.” I agree (though every
elementary lecture may be a few too many), but my deepest motivation has
closer kinship with Einstein’s question than with Born’s somewhat pat response:
Given that the world is quantum mechanical, how does it happen that the world

20 See Pauli Lectures on Physics 6: Selected Topics in Field Quantization
(–), page 172.

21 Born/Ludwig cite Ann. Phys. 64, 253 (1921). Ewald (–) began
as a student of chemistry at Cambridge in , but in quest of greater formal
rigor went in / to Göttingen to study mathematics with Hilbert, and in
 to Munich to study physics under Sommerfeld. It was Sommerfeld who
introduced him to the research area (interaction of radiation with crystals)
in which he established his reputation. Collaboration with Max von Laue in
 contributed to the early development of X-ray crystalography. Ewald—
whose wife was Jewish, and who was himself part Jewish—left Germany in 
to teach successively at Cambridge, Belfast (where J. S. Bell was among his
students, and much influenced by him) and the Brooklyn Polytechnic Institute,
from which he retired in . His last years were spent in Ithaca, New York,
where Hans Bethe—his former thesis student, now son-in-law—was professor
of physics, and where also Peter Debye (–) then lived.

22 Neither Pauli nor Born acknowledge indebtedness to Arnold Sommerfeld,
though the mathematical essence of their work—spelled out as it relates not to
the quantum mechanical particle-in-a-box problem but to heat conduction on a
uniform bar—can be found in his Lectures on Theoretical Physics 6: Partial
Differential Equations in Physics (); see §16 in Chapter 3, where the
“method of images” leads to theta functions, and to an application of “Jacobi’s
theta transformation,” concerning which Sommerfeld remarks that “For us it
constitutes the passage from Fourier’s method to the method of heat poles.
In quantum theory [it] is of importance for the rotational energy of diatomic
molecules and for the calculation of their specific heat at low temperature.”
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of gross experience manages—not by contrivance, but spontaneously—to seem
classical?

Now to the “oppressive details,” which even Born found “not at all easy”
. . . let us, in an effort to reduce notational clutter, assume initially that ℘ = 0.
And let us look initially only to the first of the terms that appear on the right
side of (65):

∞∑
n=−∞

ψ(x + 2na, t) =
[

1

σu(t)
√

2π

] 1
2

∞∑
n=−∞

exp
{
− 1

4σ2u(t)
(x− x0 + 2na)2

}

=
[

1

σu(t)
√

2π

] 1
2

∞∑
n=−∞

exp
{
− a2

σ2u(t)

(
x−x0

2a + n
)2

}

=
[

(σ/a)2

σ
√

2/π

] 1
2 ·

√
i
τ

∞∑
n=−∞

exp
{
− iπ

τ

( z

π
+ n

)2}

=
[

(σ/a)2

σ
√

2/π

] 1
2 · ϑ(z, τ)

where
u(t) ≡ [1 + i(t/τ)]

z ≡ π
2
x−x0
a

τ ≡ iπ(σ/a)2u(t)

are notations introduced to enable us to establish explicit contact with the
theory of theta functions.23 Returning with this information to (65) we have

g(x, t) =
[

(σ/a)2

σ
√

2/π

] 1
2 ·

{
ϑ(π2

x−x0
a , τ)− ϑ(π2

−x−x0
a , τ)

}
(67)

The expression on the right is manifestly odd in x, so vanishes persistently
at the origin. The ϑ -literature24 supplies ϑ3(z + π, τ) = ϑ3(z, τ) from which
it follows that g(x + 2a, t) = g(x, t), so it is also persistently the case that
g(a, t) = 0.

The Poisson summation formula supplies Jacobi’s celebrated identity25

ϑ(z, τ) = A · ϑ
(
z
τ ,− 1

τ

)
: A ≡

√
i/τ ez

2/iπτ (68)

23 See “2-dimensional ‘particle-in-a-box’ problems in quantum mechanics,
Part I: Propagator & eigenfunctions by the method of images” (), page 4.
What I call ϑ(z, τ) is more properly written ϑ3(z, τ).

24 See R. Bellman, A Brief Introduction to Theta Functions (), page 4.
25 Concerning which Bellman remarks that “it is not easy to find another

identity of comparable significance” and dedicates his elegant little book to
support of that claim.
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which we can use to obtain this variant of (67):

g(x, t) =
[

(σ/a)2

σ
√

2/π

] 1
2 ·

∞∑
n=−∞

{
exp

[
i
(
πτn2 − 2nπ2

+x−x0
a

)]

− exp
[
i
(
πτn2 − 2nπ2

−x−x0
a

)]}

=
[

(σ/a)2

σ
√

2/π

] 1
2 ·

∞∑
n=−∞

eiπτn
2
{

exp
[
− inπ

a (x− x0)
]

− exp
[
+ inπ

a (x + x0)
]}

=
[

(σ/a)2

σ
√

2/π

] 1
2 ·

∞∑
n=−∞

eiπτn
2
(2/i) sinnπ

ax · exp
[
inπ

ax0

]

=
[

(σ/a)2

σ
√

2/π

] 1
2 ·

∞∑
n=1

eiπτn
2
4 sinnπ

ax · sinnπ
ax0

=
∞∑
n=1

gn(t)Ψn(x) (69.1)

gn(t) =
√

2σ
√

2π e−π
2(σ/a)2[1+i(t/τ)]n2 ·Ψn(x0) (69.2)

It is gratifying to discover that ψ(x, t) does in fact satisfy the time-dependent
Schrödinger equation, as follows from the observations that

gn(t) = gn(0) · e− i
�

{
�π2(σ/a)2n2/τ

}
t

and that
{
etc.

}
= h2n2/8ma2 = En2 = En. Writing

g(x, t) =
∞∑
n=1

cne
− i

�
EntΨn(x)Ψn(x0) (70.1)

we notice that g(x, t) would become precisely the Green’s function if it were the
case that all the c’s were unity . . .but in fact we have

cn =
√

2σ
√

2π e−π
2(σ/a)2n2

(70.2)

The expression on the right side of (67) provides what Born & Ludwig call the
“particle representation” of g(x, t), while (70) provides what they call the “wave
representation.” The latter renders transparent the properties discussed at the
end of the preceding paragraph.

We install the clamps and, as a final step toward the construction (66) of
our “boxed Gaussian wavepacket,” concern ourselves with the evaluation of the
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normalization factor

A(t) ≡
[ ∫ a

0

|G(x, t)|2 dx

]− 1
2

=
[ ∞∑
n=1

|gn(0)|2
]− 1

2

=
[ ∞∑
n=1

c2
nΨ

2
n(x0)

]− 1
2

which by Ψ2
n(x0) = 2

a sin2 nπ
ax0 = 1

a
[
1− cos 2nπ

ax0

]
becomes

=
[
2(σ/a)

√
2π

∞∑
n=1

e−2π2(σ/a)2n2 ·
[
1− cos 2nπ

ax0

]]− 1
2

and which, we notice, is in fact t-independent. Notice also that
[
etc.

]− 1
2

vanishes (normalization becomes impossible) if x0 is placed at either end of
the box. Now write26

∞∑
n=1

e−2π2(σ/a)2n2 ·
[
1− cos 2nπ

ax0

]

= 1
2

∞∑
n=−∞

e−2π2β2n2[
1− ei(2πx0/a)n

]
(71.1)

≡ 1
2

∞∑
−∞

eiπτn
2 − 1

2

∞∑
−∞

ei (πτn
2−2zn)

= 1
2

{
ϑ(0, τ)− ϑ(z, τ)

}
= 1

2

√
i/τ

{
ϑ
(
0,− 1

τ

)
− ez

2/iπτϑ
(
z
τ ,− 1

τ

)}

= 1
2

√
i/τ

∞∑
−∞

[
exp

{
− iπ

τ
n2

}
− exp

{
− iπ

τ

( z

π
+ n

)2}]

= 1
2

1
β
√

2π

∞∑
−∞

[
exp

{
− 1

2β2 n2
}

(71.2)

− exp
{
− 1

2β2

(
x0
a + n

)2}]
with β ≡ σ/a. We have physical interest in the situation σ � a (i.e., β � 0),
but want ultimately to be in position to trace the quantum motion until

σ(t) ≡ σ
√

1 + (t/τ)2 � a

26 The pattern of these manipulations was adapted from a source already
cited.23
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signals that the distribution has become nearly flat. When β is small the sum
on the right side of (71.1) converges very slowly, but the sum (71.2) converges
very, very (!!) rapidly: give the partial sums a name

f(
√

2β,N) ≡
+N∑
−N

[
exp

{
− 1

2β2 n2
}
− exp

{
− 1

2β2 (ξ + n)2
}]

and observe, for example, that

f( 1
101 , 0) = 1− e−

1
10201 ξ

2

f( 1
101 , 1) = f( 1

101 , 0) + 2e−
1

10201 − e−
1

10201 (−1+ξ)2 − e−
1

10201 (+1+ξ)2

f( 1
101 , 2) = f( 1

101 , 1) + 2e−
1

102014 − e−
1

10201 (−2+ξ)2 − e−
1

10201 (+2+ξ)2

f( 1
101 , 3) = f( 1

101 , 2) + 2e−
1

102019 − e−
1

10201 (−3+ξ)2 − e−
1

10201 (+3+ξ)2

...

The pretty implication is that we have (for all t, and all 0 < ξ ≡ x0/a < 1 )

A =
[
2β
√

2π · 1
2β

√
2π

f(
√

2β,∞)
]− 1

2 ≈ 1 for β � 1

and that the approximation is extremely good.27 signals that
the distribution has become nearly flat. When β is small the sum on the right
side of (71.1) converges very slowly, but the sum (71.2) converges very, very (!!)
rapidly: give the partial sums a name

f(
√

2β,N) ≡
+N∑
−N

[
exp

{
− 1

2β2 n2
}
− exp

{
− 1

2β2 (ξ + n)2
}]

27 Continuing this discussion a bit, Mathematica supplies

∞∑
−∞

e−n
2

= 1.772637

At the point
√

2β = 1 which serves to separate β � 1 from β � 1 we compute,
as ξ ranges on the unit interval,

f(1,∞) ≈ f(1, 6) =




0.000000 at ξ = 0.0 and ξ = 1.0
0.000035 at ξ = 0.1 and ξ = 0.9
0.000126 at ξ = 0.2 and ξ = 0.8
0.000240 at ξ = 0.3 and ξ = 0.7
0.000331 at ξ = 0.4 and ξ = 0.6
0.000366 at ξ = 0.5

which when plotted look roughly Gaussian. For β � 1 the ξ-dependence,
though always present, is preceeded by many more 0’s.
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and observe, for example, that

f( 1
101 , 0) = 1− e−

1
10201 ξ

2

f( 1
101 , 1) = f( 1

101 , 0) + 2e−
1

10201 − e−
1

10201 (−1+ξ)2 − e−
1

10201 (+1+ξ)2

f( 1
101 , 2) = f( 1

101 , 1) + 2e−
1

102014 − e−
1

10201 (−2+ξ)2 − e−
1

10201 (+2+ξ)2

f( 1
101 , 3) = f( 1

101 , 2) + 2e−
1

102019 − e−
1

10201 (−3+ξ)2 − e−
1

10201 (+3+ξ)2

...

The pretty implication is that we have (for all t, and all 0 < ξ ≡ x0/a < 1 )

A =
[
2β
√

2π · 1
2β

√
2π

f(
√

2β,∞)
]− 1

2 ≈ 1 for β � 1 (72)

and that the approximation is extremely good.28

Return now with (72) to (66/70) and obtain

Ψ(x, t) = B(x) ·
∞∑
n=1

gn(0) e−
i
�
En2tΨn(x) (73.1)

gn(0) =
√

4β
√

2πe−π
2β2n2

sinnπξ0 (73.2)

28 Continuing this discussion a bit, Mathematica supplies

∞∑
−∞

e−n
2

= 1.772637

At the point
√

2β = 1 which serves to separate β � 1 from β � 1 we compute,
as ξ ranges on the unit interval,

f(1,∞) ≈ f(1, 6) =




0.000000 at ξ = 0.0 and ξ = 1.0
0.000035 at ξ = 0.1 and ξ = 0.9
0.000126 at ξ = 0.2 and ξ = 0.8
0.000240 at ξ = 0.3 and ξ = 0.7
0.000331 at ξ = 0.4 and ξ = 0.6
0.000366 at ξ = 0.5

which when plotted look roughly Gaussian. For β � 1 the ξ-dependence is
announced after a much longer string of 0’s.
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Figure 16: Working from (73), I have set a = 1, β = 1
20 and

ξ0 = 3
10 . From the coefficients gn(0) plotted in the top figure we

see there is no reason to carry n beyond about 20 = 1/β. The series
(73.1)—thus truncated—produces the acceptably “Gaussian” Ψ(x, 0)
shown below in black ; |Ψ(x, 0)|2 is shown in red.

Evidently we need keep only those coefficients gn(0) with

1 � n < few times ncharacteristic

ncharacteristic ≡ 1
πβ = 1

π
box size

packet width (74)

where on the evidence of the preceding figure we might take “few” ∼ π.
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Phenomenologically we expect σ to grow , therefore β to grow

β �→ β(t) ≡ σ(t)/a = β
√

1 + (t/τ)2

which by (74) entails extinction of the high harmonics: ncharacteristic to becomes
ever smaller. Such a development is absurd, and points to a defect in (73): if
we are to achieve the anticipated evolution toward flatness we must witness an

-2 -1 1 2

-2

1

2

Figure 17: Fourier construction of a square wave

F (x) = 4
π

∞∑
k=0

1
2k+1 sin

[
(2k + 1)πx

]

necessarily brings high harmonics into play.

onset of high harmonics. The evidence of Figure 18 serves to associate this
development with a loss of normalization as β becomes large.29 And that can
be attributed to our use of an approximation which at (72) was declared to be
valid only for β � 1.

29 On the other hand, normalization rapidly becomes good and stays good as
β becomes smaller. Numerical integration supplies

∫ 1

0

|Ψ(x, 0)|2 dx =




0.988891003438855 at β = 1
10

0.999999984770040 at β = 1
20

1.000000000001499 at β = 1
30

0.999999999992603 at β = 1
40

1.000000000000009 at β = 1
50

I have assigned a and ξ0 the values described in the caption to Figure 18, and
carried all sums to n = 150.
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Figure 18: Graphs of the unclamped variant of (73) at t = 0 with
a = 1 and ξ0 = 3

10 . Ψ(x, 0) is shown in black, |Ψ(x, 0)|2 in red. The
values assigned successively to β are 1

20 , 2
20 , 4

20 and 8
20 . Numerical

integration supplies

∫ 1

0

|Ψ(x, 0)|2 dx =




1.000000
0.988891
0.673167
0.111571

respectively

Two related points: First, if we enter into Mathematica the definition

Ψ(x, t;a, ξ0, β, F,m) (75)

: =
∣∣∣ m∑
n=1

√
4β
√

2πe−π
2β2n2

sinnπξ0 e−i2πFn
2t sinnπx

a

∣∣∣2
then we can run animations based upon (73). Notice that the truncated
expression on the right presents a constant term plus oscillating terms with
a total of 1

2m(m−1) characteristic frequencies30 (those are given by F (n2
1−n2

2)

30 Some of which may be coincident: the smallest examples are

42 − 12 = 82 − 72 = 15 = (4− 1)(4 + 1) = (8− 7)(8 + 7)

52 − 22 = 112 − 102 = 21 = (5− 2)(5 + 2) = (11− 10)(11 + 10)

52 − 12 = 72 − 52 = 24 = (5− 1)(5 + 1) = (7− 5)(7 + 5)

but there are infinitely many others: see §2 in Daniel W. Wyss & Walter Wyss,
“Coincident spectral lines for the hydrogen atom,” Foundations of Physics 23,
465, (1993). Here’s a triple coincidence: 120 = 112−12 = 132−72 = 172−132.
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Figure 19: Frames #0, 24, 36, 48, 84 & 168 of a filmstrip based
upon (75). Control parameters are those described in a footnote.30

and range from 3F to (m2 − 1)F ) and that it repeats itself when F t = 1. No
such multiply-periodic expression can describe unending dispersion, a tendency
toward flatness. When we watch such animations31 we observe that
• the Gaussian wavepacket does initially “diffuse,” but . . .
• when the leading edge hits the wall it reflects back . . .
• setting up complicated oscillations . . .
• which are found by numerical integration to be norm-preserving.

What we do not see is the anticipated

approach to constancy, modulated by dying ripples

Animations do show the expected behavior briefly (i.e., while dominated by
high frequency components), but begin to “slosh” as soon as lower frequency

31 When preparing those which can be found in an appendix I have again set
a = 1, β = 1

20 and m = 20. Additionally, I have set F = 1 and looked to the
representative cases ξ0 = 1

3 else 1
2 . To achieve 12-frame resolution of the fastest

oscillation I have set t = k 1
4788 (because 12 ·399 = 4788) and stepped k through

the integers. The film then recycles at frame #4788.
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Figure 20: Plots of Fourier coefficients gn(0) taken from (73.2)
with β = 1

200 , showing rapid variation as ξ0 ranges through the
values (top left to bottom right) 60

150 , 61
150 , 62

150 , 63
150 , 64

150 , 65
150 . High

frequencies would be needed to describe such variation if it were
imagined to take place in time, even though d

dtξ0 itself is small.

components have had time to express themselves. Selected frames from such a
film are presented as Figure 19.

Second related point: It follows from (73.2) that slight/slow adjustments of
ξ0 (such as we might expect to associate with “launched” wavepackets) generate
radical/rapid variations of the Fourier coefficients gn(0). The point is illustrated
in Figure 20.

And a reminder: We on page 50 set ℘ = 0. Were we to relax that
assumption (i.e., if we were to “launch” the wavepacket) then details would
change, but our general conclusions would remain intact.

We have been working in working in what Born/Ludwig (see again page 51)
call the “wave representation,” which is commonly supposed to provide the
representation of choice when t is large, but which we have found gives rise
(at least in every finite approximation) to conclusions which are most reliable/
informative when t is small, and become misleading when t is large. It is
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in an attempt to wiggle around this problem that we revert to the “particle
representation.” As a preparatory step, let (64.1) be written

ψ(x, t) =
[

1

σ[1+i(t/τ)]
√

2π

] 1
2

exp
{
− 1

4

(x− x0)2
σ2(t)

[1− i(t/τ)]
}

where the simplifying assumption ℘ = 0 has been retained. Then (65) acquires
the explicit description

g(x, t) ≡
[

1

σ[1+i(t/τ)]
√

2π

] 1
2

∞∑
j=−∞

{
exp

{
− 1

4

( x + 2ja− x0)2
σ2(t)

[1− i(t/τ)]
}

− exp
{
− 1

4

(−x + 2ja− x0)2
σ2(t)

[1− i(t/τ)]
}}

which in the familiar dimensionless variables (to the list of which we now add
T ≡ t/τ) becomes

g(x, t) ≡
[

1

σ[1+iT ]
√

2π

] 1
2

∞∑
j=−∞

{
exp

{
− 1

4

( ξ − ξ0 + 2j)2
β2( T )

[1− iT ]
}

− exp
{
− 1

4

(−ξ − ξ0 + 2j)2
β2( T )

[1− iT ]
}}

which we will abbreviate

g(x, t) ≡
[

1

σ[1+iT ]
√

2π

] 1
2

∞∑
j=−∞

{
exp

{
− X2

j

β2( T )
[1− iT ]

}

− exp
{
− Y 2

j

β2( T )
[1− iT ]

}}

or again—still more compactly—

g(x, t) ≡
[

1

σ[1+iT ]
√

2π

] 1
2

∞∑
j=−∞

{
e−XjeiXjT − e−YjeiYjT

}

Therefore

|g(x, t)|2 = 1
a · 1

β2( T )
√

2π

∞∑
j,k=−∞

{
e−XjeiXjT − e−YjeiYjT

}

×
{

e−Xke−iXkT − e−Yke−iYkT

}

=
∑
j

(diagonal terms)j +
∑
j>k

(off-diagonal terms)jk
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Evidently (it is evident at any rate to Mathematica)

(diagonal term)j ∼ e−2Xj − 2e−(Xj+ Yj) cos(Yj − Xj)T + e−2Yj

while

(off-diagonal term)jk ∼ 2 e−(Xj+Yj+Xk+Yk)
{

e(Yj+ Yk) cos(Xj − Xk)T

− e(Xj+ Yk) cos(Yj − Xk)T

− e(Yj+ Xk) cos(Xj − Yk)T

+ e(Xj+ Xk) cos(Yj − Yk)T
}

But

Xj ≡
( x− x0 + 2ja)2

4σ2

1
1 + (t/τ)2

∼ 1
β2

j2(τ/t)2
[
1− (τ/t)2 + · · ·

]
Yj ≡

(−x− x0 + 2ja)2

4σ2

1
1 + (t/τ)2

∼ ditto

shows that
• all such expressions die when t� τ
• larger j entails slower death.

So asymptotically32 we have

(off-diagonal term)jk ∼ 16 e−(Zj+Zk) cos
{

(Zj − Zj)T
}

= 16 exp
{
− 1

β2 (j2− k2)(τ/t)2
}

cos
{

1

β2 (j2− k2)(τ/t)1
}

...

Here I interrupt this work. It has become clear to me that the wavepacket-in-a-box

problem is a tail that has begun to wag the dog. My intention had been to develop

that topic elsewhere, and resume this work (i.e., to discuss the translation into phase

space formalism) after those results were in hand. But by page 14 of “Wavepacket in

a box” (January 2001) it had become clear to me that the result I sought—universal

dispersion to flattness—is not to be had, is not in the physics until some new idea

is imported into orthodox quantum mechanics.

32 Asymptotically Xj and Yj differ insignificantly, so I adopt the generic
notation Zj .


